Basic Electrical Formulas

Volts (E):

Volts = square root of (watts x ohms)

Volts = watts / amperes

Volts = amperes x ohms

Ohms (R):

- Ohms = volts / amperes
- $Ohms = volts^2 / watts$
- $Ohms = watts / amperes^2$

Watts (W):

Watts = volts² / ohms

Watts = $amperes^2 x ohms$

Watts = volts x amperes

Amperes (I):

Amps = volts / ohms

Amps = watts / volts

Amps = square root of (watts / ohms)

AC Motor Formulas:

E = voltage / I = amps / W = watts / PF = power factor / Eff = efficiency / HP = horsepower

Single Phase:

Current (amps)	Ι	=	<u>HP x 746</u>	(where hp is known)
			E x Eff x PF	
Current (amps)	Ι	=	<u>KW x 1000</u> E x PF	(where KW is known)
Current (amps)	Ι	=	<u>Kva x 1000</u> E	(where Kva is known)
Horsepower (hp)	(hp)	= <u>I</u>	<u>x E x Eff x Pl</u> 746	<u>F</u>
Kilowatts (KW)	(KW))=	<u>I x E x PF</u> 1000	
Kilovolt-Amps (Kva) Kva	=	<u>I x E</u>	

1000

Three Phase:

Current (amps)	I =	<u>HP x 746</u> 1 73 x F x Eff x PE	(where hp is known)
Current (amps)	I =	<u>KW x 1000</u>	(where KW is known)
emen (mp)		1.73 x E x PF	
Current (amps)	I =	<u>Kva x 1000</u>	(where Kva is known)
		1.73 x E	
Horsepower (hp)	HP =	<u>1.73 x I x E x Eff x PF</u>	(where hp is known)
		746	
Kilowatts (KW)	WK =	<u>1.73 x I x E x PF</u>	(where hp is known)
		1000	
Kilovolt-Amps (Kva) Kva=	<u>1.73 x I x E</u> 1000	(where hp is known)
AC Efficiency and P	ower Fa	ctor Formulas:	
Single Dhase Efficie		746 y UD	
Single Thase Efficience	licy.	E x I x PF	
Single Phase Power I	Factor:	Input Watts	
		V x A	
Three Phase Efficie	ency:	<u>746 x HP</u>	
	E	x I x PF x 1.732	

Three Phase Power Factor:	Input Watts
	E x I x 1.732

Electrical Rules of Thumb:

Sync Speed Approx. Torque

<u>rpm</u>	<u>lb-ft per hp</u>
3600	1.4
1800	3
1200	4.5
900	5.8

Rated	Approximat	e Amps / hp
Voltage	Single Phase	Three Phase

115	10	
230	5	2.5
460		1.25
575		1

Note: This information is provided as a quick reference resource and is not intended to serve as a substitute for qualified engineering assistance. While every effort has been made to ensure the accuracy of this information, errors can occur. As such, neither IFP, any of its affiliated companies nor its employees will assume any liability for damage, injury or misapplication as result of using this reference guide.