Congratulations to all who donated to the IFP/EHA Freedom Foundation donation challenge. Team EHA was the winner this year with a total donation weight tally of 1,214 lbs. compared to IFP's 893 lbs. To say this organization was overwhelmed with our donation is an understatement.  This donation will help get local veterans in need through the holiday season.

Freedon Foundation Local center receiving IFP donations

The Veterans' Freedom Foundation provides financial assistance and other services to veterans.  It might just mean a cab ride to the hospital or sending a care package, but we feel fortunate to help provide any assistance needed to our veterans. Veterans’ Freedom Foundation bridges this gap.  If veterans face losing their homes or vehicles due to a missed payment, Veterans’ Freedom Foundation donates money to make the payment, buying time until full assistance arrives.



image of Vets

Today is a day to honor all veterans who have selflessly served out country to protect the freedoms many of us take for granted. These men and women voluntarily leave their loved ones with the knowledge that every day they might have to make the ultimate sacrifice, their life for the country they love. So take today and EVERY day to offer sincere thanks to those who have served and those who continue to serve our country. The IFP list of Veterans include:

Jack May
Steve Wild
Dave Adams
Rick DeMars
Mike Pedersen
Aaron Williams
Todd Hamor
Chris Marlow
Ryan Wieneke
Justin Augustin
Mike Pace
Don Kaas
Shantel Thomas
Matt Bolden
Jim Sparks
Nick Stutterheim
Jerad Annis
Dave Friesen
Robert Newburn

Jack May formally with IFP recieves a Quilt of Valor

Jack May, pictured right, former employee of Iowa Fluid Power has received a Quilt of Valor today. We extend our thanks and appreciation for Jack's time spent in the service. Quilt of Valor given to wounded and recovering soldiers.

Quilts of Valor is a non-profit foundation whose goal is to cover ALL physically or psychologically wounded servicemembers with a freedom quilt, honoring them for their sacrifices. You may join the cause and make an American patchwork quilt for maybe a special warrior/veteran that you may know or one that you don't know but would like to thank.  To learn more, visit this article published on Quilting Tidbits regarding the Quilts of Valor program.

Quilt of Valor profram examples     image of Quilt for Valor program

Samples of quilts made for veterans who have served.

When to consider a customized engine cooling system solution

By Paul Martinez - Innovative Fluid Power South (IFPS); Texas & Louisiana

Selecting the right engine cooling system for a specific application can be a difficult process for an engineer. Some suppliers provide online tools to spec out a standard, off-the-shelf cooling unit or heat exchanger. However, a custom-made engine cooling system may make more sense and this is where a fluid power expert can help.

Whether your application is industrial or mobile, here are some factors to consider.

Modular Design speeds up field serviceability. In the high horsepower market with engines running at 1,500-5,000 hp, component damage can occur. Supplier, AKG Thermal Systems has the solution to get you up and running quickly. If one of the sections in their modular MCS Series cooler gets damaged in the field, you can remove it and replace it with just hand tools, avoiding the cost and time of replacing the entire cooling system. For more on this feature, check out this article:

Modular Design Eases Field Serviceability by SARA JENSEN,  DECEMBER 1, 2016, OEM/Off-Highway

Environment - Is it a mobile hydraulics application i.e. construction or agriculture, oil & gas, power generation or transportation? Is it used in rugged terrain? - or is it for a stationary industrial hydraulics application? What are you cooling? i.e. gear boxes, power units, motors, power packs, compressors etc. How will your cooling system be laid out in the most efficient manner?

Repair or Replace - What are you willing to pay to achieve the best possible system? What assurances do you have that your cooling system won’t cause further equipment complications – “the domino effect.” No matter how long these components last, it’s important to know how your product supplier will work with you when the time comes to repair or replace a unit. Yes, these components will eventually need replacing but in some cases, it’s faster and cheaper just to replace the heat exchanger or cooler rather than repair it.

Distributor sourcing - attributes to consider when choosing a distributor for your cooling system include.

  • A thorough knowledge of heat transfer
  • Continuous research and development
  • Leading edge innovation, and state-of-the-art production
  • A one-stop source for all your cooling needs.

    With our supplier-partner AKG Thermal Solutions, Innovative Fluid Power South is your assurance you can select the best cooler or heat exchanger for your application.

AKG Thermal Solutions Manufacturers cooling systems and heat exchangers

  • Industrial Hydraulics

  • Mobile Hydraulics

  • Compressor

  • Process Cooling

  • Custom Cooling

  • AEL Engine Cooling

AKG Thermal Solutions products

IFP University logo

Iowa Fluid Power offers an entry level customer training class specializing in Industrial and Mobile Hydraulic Equipment. This class is intended to address the needs of both maintenance and design personnel to establish a basic understanding of hydraulics.

This training class is highly recommended for those who are new to hydraulic system design, maintenance, and operation. The course also offers valuable insight for those who already have experience in these areas. We cover the general principles of hydraulics throughout this class in a clear and concise manner to provide good groundwork for anyone working with hydraulic systems.

                               Instructor: Jack May                                
Training Class at McNeilus Trucks


By the end of the IFP Hydraulics Class, participants should be able to:

  1. Understand the basics of schematic symbol reading for better troubleshooting and understanding of the machine's operation.
  2. Understand the differences between the various  types of pumps used in hydraulics. Learn how to design and maintain good, cost-effective pumping systems.
  3. Understand the various pressure control valve types including their schematics and function.
  4. Understand the importance of hydraulic system filtration and contamination preventative maintenance.
  5. Become familiar with hydraulic system accessories and their purpose.
  6. Learn the basic framework of troubleshooting and follow a prescribed method of preventative maintenance and system repair.

1.  Hydraulic Schematic Symbols
Schematic symbol reading is a vital troubleshooting skill. Schematic symbols and schematic drawings are very popular in the field of hydraulics.

  • The schematic provides a symbolic way to show all the components and connections in a hydraulic system.
  • A schematic also allows a skilled reader to understand much of the engineering and operating principals that the machine’s designers intended.
  • Your objective is to be able to interpret schematic elements as used in components and system drawings. You’ll learn the basic hydraulic system symbol sets:
    • Line styles
    • Connected & crossing lines
    • Shapes
    • Operators – Operators attach components to indicate the methods by which that component is controlled.
    • Extra Symbols; i.e. accumulators, cylinders, orifice/flow control, Tank/reservoir, variable or adjustable springs, component rotation, cartridge/logic valve, ball valves and more.

2.  Pumps (positive & non-positive pumping systems)

Positive and Non-Positive Pumping tackles the differences between the two types of systems and the design and maintenance needs of each. Cavitation and aeration are addressed as special concerns.

Pump Startup (7 key steps)

  1. Rotation
  2. Gauge
  3. Fill the case
  4. Block system
  5. Bump
  6. Lower the pump setting
  7. Set the relief valve

3.  Valves

  • Pressure relief valves; understand direct acting balanced and pilot operated relief valves plus basic relief valve concepts.
  • Pressure reducing valves; understand the basic valve functionality.
  • Sequence valves; understand their purpose, design and working principles.
  • Unloading valves; learn the differences and similarities of each.
  • Counterbalance valves; these valves allow raised loads to be lowered safely with a minimum of wasted energy.
  • Directional Control valves; a valve that starts, stops and changes the direction of the fluid. You will learn the types, operators and how they work.

4.  Cylinders & Motors


  • Types of cylinders
  • Special applications
  • Cylinder parts
  • Accessories


  • Common types of hydraulic motors (low/high speed)
  • Motor applications
  • Key points when specifying

5.  Accessories

  • Pressure gauges
  • Desicant breathers
  • Heat exchangers
  • Pressure switches
  • Accumulators

6.  Troubleshooting Process

  • Pump evaluation process
  • Filtration/function, application, installation techniques
  • Reservoirs/function, application
  • Basic hydraulic system operation
  • Cleaning of hydraulic systems
  • Hydraulic lubrication principals
  • Proper PM techniques for hydraulics



Lack of hydraulic system maintenance is the leading cause of component and system failure, yet most maintenance personnel do not understand proper maintenance techniques of a hydraulic system. The foundation to perform proper maintenance on a hydraulic system has three areas of concern: corrective, preventative and predictive.

Corrective Maintenance

It takes place following failure or damage, that is, it only occurs when there is an error in the system. This maintenance entails the following consequences:

  • Unplanned shutdowns
  • At production, it affects production lines
  • It means costs due to not budgeted repair and replacement
  • The time the system will be out of operation is not predictable

Preventative Maintenance (PM)

Preventive Maintenance of a hydraulic system is very basic and simple and if followed properly can eliminate most hydraulic component failure. Preventive Maintenance is also a discipline and must be followed consistently to obtain results.

Consider a PM program as being performance oriented rather than being activity oriented. Many organizations have good PM procedures but do not require maintenance personnel to follow them or hold them accountable for the proper execution of these procedures. To develop a good preventive maintenance program, follow these steps:

         1.  Identify the system operating condition.

  • Does the system operate 24 hours a day, 7 days a week?
  • Does the system operate at maximum flow and pressure 70% or better during operation?
  • Is the system located in a dirty or hot environment?
  • Identify the system operating condition.

2.  What requirements does the Equipment Manufacturer state for Preventive Maintenance on the hydraulic system?

3.  What requirements and operating parameters does the component manufacturer state concerning the hydraulic fluid ISO particulate?

4.  What requirements and operating parameters does the filter company state concerning their filters ability to meet this requirement?

5.  What equipment history is available to verify the above procedures for the hydraulic system?

As in all Preventive Maintenance Programs it’s a good practice to write procedures required for each PM task. Steps or procedures must be written for each task and they must be accurate and understandable by all maintenance personnel from entry level to master technicians. Preventive Maintenance procedures must be a part of the PM Job Plan which includes

  • Tools or special equipment required performing the task.
  • Parts or material required performing the procedure with store room number.
  • Safety precautions for this procedure.
  • Environmental concerns or potential hazards.

A list of Preventive Maintenance Task for a Hydraulic System could be:

Hydraulic system preventative maintenance task list

Preventive Maintenance is the core support that a hydraulic system must have to maximize component life and reduce system failure. Preventive Maintenance procedures that are properly written and followed will allow equipment to operate to its full potential and life cycle.

Predictive Maintenance
Predictive maintenance consists of determining the real technical conditions (mechanical and electrical) of the equipment examined, while it is in full operation.

The cause of many breakdowns couldn’t have been prevented with routine maintenance, but could have been caught with a predictive model. In many cases, it doesn’t make sense at all to do PMs from both a cost AND a time perspective. Regarding the preventative maintenance model, there are 3 critical factors in preventative maintenance that you must consider:

  1. How bad is the worst-case scenario?
  2. What is the likelihood of a breakdown?
  3. How much will it cost?

So, how often should you PM? Should you do it every 6 months, every 8 months or maybe every 4 months? This is something that is a bit controversial and needs to be looked at from a cost perspective. At the end of the day, PMs can be expensive if you are over PMing something, but it can help prevent critical failures. However, you also need to consider the fact that even if you PM something, that doesn’t necessarily prevent all failures. You need to make sure you are PMing the right thing and the correct frequency.







Process Cooling Systems/Bearing Lube Cooling Systems/Turbine Lube Systems

Every industry has its unique challenges, but virtually all industries share the goals of increased machine uptime, reduced maintenance, improved safety, energy savings and lower total cost of ownership. Having a reliable machine lubrication system is vitally important. Bearing life is often much better when the bearing is kept clean and well lubricated. However, many applications make good maintenance difficult.

image of custom process cooling lubrication system

Process Cooling System
Process cooling systems provide cooling fluid to a process function.  The process starts with the reservoir; it provides some heat transfer, however the majority of cooling starts with heat exchangers. Heat exchangers remove heat from a system by transferring the heat to another media (water or air). Types of heat exchangers may include fan, shell & tube, plate or refrigerated and vary in cost and efficiency. Typically, multiple pumps are used to prevent a single failure from shutting down the system.

Bearing Lube / Cooling System

lubrication system featuring a bearing skid system

image of bearing lube skid

Bearing lubrication and cooling skids provide a source of cool clean oil to remove heat from bearings.  This extends the life of the system and prevents cost breakdowns.  Lube systems typically have the following:
                Lube pump and optional backup lube pump
                Heat exchanger
                Gravity return ports
                Low and kill Level switches
                High and kill temperature switches
                Output pressure switch and gauge

Turbine Lube System

Turbines require bearings for support during operation. Each of these bearings are supplied with hydraulic oil for lubrication. Hydraulic Lubrication systems are crucial if turbines are to have a long and productive life. However, the oil itself needs to be kept at the right temperature for effective lubrication. EHA-manufactured hydraulic lubrication systems are designed to keep the oil at the right temperature. They typically feature the following components:

  • Lube Reservoir that contains the cooling oil for a turbine based pump.
  • Electrical emergency backup pump that provides pre-startup lube flow and backup flow in the case of a main turbine pump failure.
  • Low & high pressure switches Learn more about pressure switches for lubrication systems.
  • Dual Lube filtration with dirty filter indicators – Lean More
  • Pressure gauges before and after main filtration give a visual indication of the pressure
  • High Temperature switch and gauge
  • Water-to-Oil heat exchanger with water saving and temperature regulation valve
  • Lube temperature gauges before and after heat exchanger
  • Oil sample port - for easy lab sampling of oil 
  • Fluid Level indicator
  • Turbine Pressure regulator
  • Turbine suction and gravity return ports

Turbine lubrication maiuntenance system

image of turbine lubrication system



EHA - Advantages of using Accumulators in Hydraulic Systems

EHA Accumulator Rack
Energy storage
An essential function of accumulators is their ability to store energy. Particularly in cyclic or varying operations, accumulators discharge in times of high demand and recharge during periods of low demand. They are often used to supplement pump flow during peak demand. Without an accumulator, the pump and motor must be sized to handle peak power requirements even if maximum power is only required momentarily. Benefits include:
  • Smaller pump that recharges the system during periods of slack demand.
  • Smaller motor; a total system that demands less energy & heat and costs less.
Emergency backup
Accumulators can maintain a high-pressure charge almost indefinitely and serve as an emergency power source should a machine lose electric power or a pump fails. Benefits include:
  • Provides the necessary flow and pressure to retract a cylinder.
  • Close a valve.
  • Move a machine to a safe position until power is restored or the malfunction is corrected.
  • If a lubricant pump fails, the accumulator maintains pressure until the machine stops or a secondary pump restores flow.
Vibration and shock reduction.
Mounting a small accumulator near the outlet of the pump can absorb pulsations, minimize vibration and provide smoother operation. Also, adding an accumulator into the return line of machines can mitigate shock. Benefits include:
  • Cushioning "water" hammer effect
  • Prevent damage to sensitive components and extend component life and lower maintenance costs.
  • Reduce overall hydraulic system noise levels resulting in quieter machines.
Leakage & temperature compensation
An accumulator can maintain constant pressure even if fluid slowly leaks internally past piston seals or valve clearances and compensate for temperature-related pressure differences in a closed hydraulic system. Only when circuit pressure drops below preset limits does the pump fire up and recharge the accumulator.
Faster response
Bladder and diaphragm accumulators have virtually instantaneous response and can quickly supply fluid to valves and improve their performance. Accumulators can also immediately meet peak flow requirements.

EHA Fluid power Repairs

When the time comes and you experience cylinder failure, the decision must be made whether to buy new or repair. The benefits of repairing include:

  1. Shorter lead times
  2. Significant cost savings over new cylinders
  3. The ability to identify the cause of failure

Short Turnaround Time
EHA offers quick turnaround on cylinder repair as well as emergency repair service. We understand that breakdowns can occur at any time and when they do you are robbed of your valuable production time and profit. Our in-house machining capabilities are made up of multiple machining centers with experienced technicians They are qualified to rebuild your cylinder to a “better than new” condition. We have a fully equipped repair center with the necessary equipment for repairing cylinders of all sizes wide range of industries.

Save by Repair
Repairing a cylinder can save you approximately 40-50% the cost of new. Although a large portion of the savings comes as a direct result of using many of the existing parts in the repair process, this will not compromise the quality or performance of a repaired cylinder. We test every cylinder we repair. Our testing standards will assure you that your cylinder will be ready for immediate use when it leaves our facility.

Save With Investigative Information
Cylinders sent in for repair receive a thorough inspection at the start of the repair process. During this phase, our technicians check for any stress that may have been placed on the unit from excessive side loads, improper mounting, fluid contamination or defective seals. The information gathered during our inspection may help you adjust and correct issues with your related equipment to extend the life of your cylinders. Simply purchasing new cylinders may not address the specific issues that may lead to repeat failure of the new product.


Balluff News Header Image - products

© 2018 Balluff Inc

Balluff new Emergency Stop Device

Emergency Stop Device
Compact housing for simple installation on various machines and equipment

Read more



Balluff True Color Sensor

True Color Sensor BFS 33M
Balluff’s true color sensor uses white LEDs to produce a greater color spectrum evaluation

Read more


Balluff Magnetically coded safety switch

Magnetically coded Non-Contact safety switch
Non-contact magnetically coded safety switches are outstanding for monitoring guard doors-especially in environments where contamination or dust is expected.

Read more


Balluff RFID Non Coded Safety Switch

RFID Coded Non-Contact Safety Switch
Tamper resistant, wear free access protection – with a wide range for installation and utilization.

Read more


Balluff Optional Latching Force safety switch

RFID Coded Non-Contact Safety Switch with Optional Latching Force

Tamper-proof, wear-free access security.

Read more



New Literature


Ballluff Industries Literature          Balluff Systems 1          Balluff Control Systems

                                                                   Steel and Metallurgical                          O-Link for Machine Builders                    Control Systems Architecture:
                                                                              Industry:                                                                                                          Common Layouts for
                                                                    Reliability & Flexibility                                                                                                  Control Designers
                                                                    (from a Single Source)   

© 2018 Balluff Inc